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Developing algorithms for solving high-dimensional partial dif-
ferential equations (PDEs) has been an exceedingly difficult
task for a long time, due to the notoriously difficult problem
known as the “curse of dimensionality.” This paper introduces
a deep learning-based approach that can handle general high-
dimensional parabolic PDEs. To this end, the PDEs are reformu-
lated using backward stochastic differential equations and the
gradient of the unknown solution is approximated by neural
networks, very much in the spirit of deep reinforcement learn-
ing with the gradient acting as the policy function. Numerical
results on examples including the nonlinear Black–Scholes equa-
tion, the Hamilton–Jacobi–Bellman equation, and the Allen–Cahn
equation suggest that the proposed algorithm is quite effective in
high dimensions, in terms of both accuracy and cost. This opens
up possibilities in economics, finance, operational research, and
physics, by considering all participating agents, assets, resources,
or particles together at the same time, instead of making ad hoc
assumptions on their interrelationships.

partial differential equations | backward stochastic differential equations |
high dimension | deep learning | Feynman–Kac

Partial differential equations (PDEs) are among the most
ubiquitous tools used in modeling problems in nature. Some

of the most important ones are naturally formulated as PDEs in
high dimensions. Well-known examples include the following:

i) The Schrödinger equation in the quantum many-body prob-
lem. In this case the dimensionality of the PDE is roughly
three times the number of electrons or quantum particles in
the system.

ii) The nonlinear Black–Scholes equation for pricing financial
derivatives, in which the dimensionality of the PDE is the
number of underlying financial assets under consideration.

iii) The Hamilton–Jacobi–Bellman equation in dynamic pro-
gramming. In a game theory setting with multiple agents, the
dimensionality goes up linearly with the number of agents.
Similarly, in a resource allocation problem, the dimen-
sionality goes up linearly with the number of devices and
resources.

As elegant as these PDE models are, their practical use has
proved to be very limited due to the curse of dimensionality (1):
The computational cost for solving them goes up exponentially
with the dimensionality.

Another area where the curse of dimensionality has been an
essential obstacle is machine learning and data analysis, where
the complexity of nonlinear regression models, for example,
goes up exponentially with the dimensionality. In both cases the
essential problem we face is how to represent or approximate a
nonlinear function in high dimensions. The traditional approach,
by building functions using polynomials, piecewise polynomials,
wavelets, or other basis functions, is bound to run into the curse
of dimensionality problem.

In recent years a new class of techniques, the deep neu-
ral network model, has shown remarkable success in artificial

intelligence (e.g., refs. 2–6). The neural network is an old
idea but recent experience has shown that deep networks with
many layers seem to do a surprisingly good job in modeling
complicated datasets. In terms of representing functions, the
neural network model is compositional: It uses compositions
of simple functions to approximate complicated ones. In con-
trast, the approach of classical approximation theory is usually
additive. Mathematically, there are universal approximation the-
orems stating that a single hidden-layer neural network can
approximate a wide class of functions on compact subsets (see,
e.g., survey in ref. 7 and the references therein), even though
we still lack a theoretical framework for explaining the seem-
ingly unreasonable effectiveness of multilayer neural networks,
which are widely used nowadays. Despite this, the practical
success of deep neural networks in artificial intelligence has
been very astonishing and encourages applications to other
problems where the curse of dimensionality has been a tor-
menting issue.

In this paper, we extend the power of deep neural networks
to another dimension by developing a strategy for solving a large
class of high-dimensional nonlinear PDEs using deep learning.
The class of PDEs that we deal with is (nonlinear) parabolic
PDEs. Special cases include the Black–Scholes equation and the
Hamilton–Jacobi–Bellman equation. To do so, we make use of
the reformulation of these PDEs as backward stochastic differ-
ential equations (BSDEs) (e.g., refs. 8 and 9) and approximate
the gradient of the solution using deep neural networks. The
methodology bears some resemblance to deep reinforcement
learning with the BSDE playing the role of model-based rein-
forcement learning (or control theory models) and the gradient
of the solution playing the role of policy function. Numerical
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examples manifest that the proposed algorithm is quite satisfac-
tory in both accuracy and computational cost.

Due to the curse of dimensionality, there are only a very
limited number of cases where practical high-dimensional algo-
rithms have been developed in the literature. For linear parabolic
PDEs, one can use the Feynman–Kac formula and Monte Carlo
methods to develop efficient algorithms to evaluate solutions at
any given space–time locations. For a class of inviscid Hamilton–
Jacobi equations, Darbon and Osher (10) recently developed
an effective algorithm in the high-dimensional case, based on
the Hopf formula for the Hamilton–Jacobi equations. A general
algorithm for nonlinear parabolic PDEs based on the multilevel
decomposition of Picard iteration is developed in ref. 11 and
has been shown to be quite efficient on a number of examples
in finance and physics. The branching diffusion method is pro-
posed in refs. 12 and 13, which exploits the fact that solutions
of semilinear PDEs with polynomial nonlinearity can be repre-
sented as an expectation of a functional of branching diffusion
processes. This method does not suffer from the curse of dimen-
sionality, but still has limited applicability due to the blow-up of
approximated solutions in finite time.

The starting point of the present paper is deep learning. It
should be stressed that even though deep learning has been a
very successful tool for a number of applications, adapting it to
the current setting with practical success is still a highly nontriv-
ial task. Here by using the reformulation of BSDEs, we are able
to cast the problem of solving PDEs as a learning problem and
we design a deep-learning framework that fits naturally to that
setting. This has proved to be quite successful in practice.

Methodology
We consider a general class of PDEs known as semilinear
parabolic PDEs. These PDEs can be represented as

∂u

∂t
(t , x ) +

1

2
Tr
(
σσT(t , x )(Hessxu)(t , x )

)
+∇u(t , x ) ·µ(t , x )

+ f
(
t , x , u(t , x ),σT(t , x )∇u(t , x )

)
= 0 [1]

with some specified terminal condition u(T , x ) = g(x ). Here
t and x represent the time and d -dimensional space variable,
respectively, µ is a known vector-valued function, σ is a known
d × d matrix-valued function, σT denotes the transpose associ-
ated to σ,∇u and Hessxu denote the gradient and the Hessian of
function u with respect to x , Tr denotes the trace of a matrix, and
f is a known nonlinear function. To fix ideas, we are interested
in the solution at t = 0, x = ξ for some vector ξ ∈Rd .

Let {Wt}t∈[0,T ] be a d -dimensional Brownian motion and
{Xt}t∈[0,T ] be a d -dimensional stochastic process which satisfies

Xt = ξ+

∫ t

0

µ(s,Xs) ds +

∫ t

0

σ(s,Xs) dWs . [2]

Then the solution of Eq. 1 satisfies the following BSDE (cf., e.g.,
refs. 8 and 9):

u(t ,Xt)− u(0,X0)

=−
∫ t

0

f
(
s,Xs , u(s,Xs),σ

T(s,Xs)∇u(s,Xs)
)
ds

+

∫ t

0

[∇u(s,Xs)]
T σ(s,Xs) dWs .

[3]

We refer to Materials and Methods for further explanation
of Eq. 3.

To derive a numerical algorithm to compute u(0,X0), we treat
u(0,X0)≈ θu0 ,∇u(0,X0)≈ θ∇u0 as parameters in the model

and view Eq. 3 as a way of computing the values of u at the
terminal time T , knowing u(0,X0) and ∇u(t ,Xt). We apply a
temporal discretization to Eqs. 2 and 3. Given a partition of the
time interval [0,T ]: 0 = t0< t1< . . .< tN =T , we consider the
simple Euler scheme for n = 1, . . . ,N − 1:

Xtn+1 −Xtn ≈µ(tn ,Xtn ) ∆tn +σ(tn ,Xtn ) ∆Wn , [4]

and

u(tn+1,Xtn+1)− u(tn ,Xtn )

≈− f
(
tn ,Xtn , u(tn ,Xtn ),σT(tn ,Xtn )∇u(tn ,Xtn )

)
∆tn

+ [∇u(tn ,Xtn )]T σ(tn ,Xtn ) ∆Wn ,

[5]

where
∆tn = tn+1− tn , ∆Wn =Wtn+1 −Wtn . [6]

Given this temporal discretization, the path {Xtn }0≤n≤N can be
easily sampled using Eq. 4. Our key step next is to approximate
the function x 7→σT(t , x )∇u(t , x ) at each time step t = tn by a
multilayer feedforward neural network

σT(tn ,Xtn )∇u(tn ,Xtn ) = (σT∇u)(tn ,Xtn )

≈ (σT∇u)(tn ,Xtn |θn),
[7]

for n = 1, . . . ,N − 1, where θn denotes parameters of the neural
network approximating x 7→σT(t , x )∇u(t , x ) at t = tn .

Thereafter, we stack all of the subnetworks in Eq. 7
together to form a deep neural network as a whole, based
on the summation of Eq. 5 over n = 1, . . . ,N − 1. Specifically,
this network takes the paths {Xtn }0≤n≤N and {Wtn }0≤n≤N

as the input data and gives the final output, denoted by
û({Xtn }0≤n≤N , {Wtn }0≤n≤N ), as an approximation of u(tN ,
XtN ). We refer to Materials and Methods for more details on
the architecture of the neural network. The difference in the
matching of a given terminal condition can be used to define the
expected loss function

l(θ) =E

[∣∣g(XtN )− û ({Xtn }0≤n≤N , {Wtn }0≤n≤N )
∣∣2]. [8]

The total set of parameters is θ= {θu0 , θ∇u0 , θ1, . . . , θN−1}.
We can now use a stochastic gradient descent-type (SGD)

algorithm to optimize the parameter θ, just as in the standard
training of deep neural networks. In our numerical examples,
we use the Adam optimizer (14). See Materials and Methods for
more details on the training of the deep neural networks. Since
the BSDE is used as an essential tool, we call the methodology
introduced above the deep BSDE method.

Examples
Nonlinear Black–Scholes Equation with Default Risk. A key issue in
the trading of financial derivatives is to determine an appropriate
fair price. Black and Scholes (15) illustrated that the price u of
a financial derivative satisfies a parabolic PDE, nowadays known
as the Black–Scholes equation. The Black–Scholes model can be
augmented to take into account several important factors in real
markets, including defaultable securities, higher interest rates for
borrowing than for lending, transaction costs, uncertainties in the
model parameters, etc. (e.g., refs. 16–20). Each of these effects
results in a nonlinear contribution in the pricing model (e.g., refs.
17, 21, and 22). In particular, the credit crisis and the ongoing
European sovereign debt crisis have highlighted the most basic
risk that has been neglected in the original Black–Scholes model,
the default risk (21).

Ideally the pricing models should take into account the whole
basket of underlyings that the financial derivatives depend on,

8506 | www.pnas.org/cgi/doi/10.1073/pnas.1718942115 Han et al.
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resulting in high-dimensional nonlinear PDEs. However, existing
pricing algorithms are unable to tackle these problems gener-
ally due to the curse of dimensionality. To demonstrate the
effectiveness of the deep BSDE method, we study a special
case of the recursive valuation model with default risk (16, 17).
We consider the fair price of a European claim based on 100
underlying assets conditional on no default having occurred yet.
When default of the claim’s issuer occurs, the claim’s holder
receives only a fraction δ ∈ [0, 1) of the current value. The possi-
ble default is modeled by the first jump time of a Poisson process
with intensity Q , a decreasing function of the current value;
i.e., the default becomes more likely when the claim’s value is
low. The value process can then be modeled by Eq. 1 with the
generator

f
(
t , x , u(t , x ),σT(t , x )∇u(t , x )

)
=− (1− δ)Q(u(t , x )) u(t , x )−R u(t , x )

[9]

(16), where R is the interest rate of the risk-free asset. We
assume that the underlying asset price moves as a geomet-
ric Brownian motion and choose the intensity function Q as a
piecewise-linear function of the current value with three regions
(vh < v l , γh >γl ):

Q(y) =1(−∞,vh )(y) γh +1[v l ,∞)(y) γl

+1[vh ,v l )(y)
[
(γh−γl )

(vh−v l )

(
y − vh

)
+ γh

]
[10]

(17). The associated nonlinear Black–Scholes equation in
[0, T ]×R100 becomes

∂u

∂t
(t , x ) + µ̄x ·∇u(t , x ) +

σ̄2

2

d∑
i=1

|xi |2
∂2u

∂x2
i

(t , x )

− (1− δ)Q(u(t , x )) u(t , x )−R u(t , x ) = 0. [11]

We choose T = 1, δ= 2/3, R = 0.02, µ̄= 0.02, σ̄= 0.2, vh =
50, v l = 70, γh = 0.2, γl = 0.02, and the terminal condition
g(x ) = min{x1, . . . , x100} for x = (x1, . . . , x100)∈R100. Fig. 1
shows the mean and the SD of θu0 as an approxima-
tion of u(t=0, x=(100, . . . , 100)), with the final relative error

Fig. 1. Plot of θu0 as an approximation of u(t=0, x=(100, . . . , 100)) against
the number of iteration steps in the case of the 100-dimensional nonlinear
Black–Scholes equation with 40 equidistant time steps (N=40) and learn-
ing rate 0.008. The shaded area depicts the mean ± the SD of θu0 as an
approximation of u(t=0, x=(100, . . . , 100)) for five independent runs. The
deep BSDE method achieves a relative error of size 0.46% in a runtime of
1,607 s.

being 0.46%. The not explicitly known “exact” solution of
Eq. 11 at t = 0, x = (100, . . . , 100) has been approximately
computed by means of the multilevel Picard method (11):
u(t=0, x=(100, . . . , 100))≈ 57.300. In comparison, if we do not
consider the default risk, we get ũ(t=0, x=(100, . . . , 100))≈
60.781. In this case, the model becomes linear and can be solved
using straightforward Monte Carlo methods. However, neglect-
ing default risks results in a considerable error in the pricing, as
illustrated above. The deep BSDE method allows us to rigorously
incorporate default risks into pricing models. This in turn makes
it possible to evaluate financial derivatives with substantial lower
risks for the involved parties and the societies.

Hamilton–Jacobi–Bellman Equation. The term curse of dimen-
sionality was first used explicitly by Richard Bellman in the
context of dynamic programming (1), which has now become
the cornerstone in many areas such as economics, behavioral
science, computer science, and even biology, where intelligent
decision making is the main issue. In the context of game theory
where there are multiple players, each player has to solve a high-
dimensional Hamilton–Jacobi–Bellman (HJB) type equation to
find his/her optimal strategy. In a dynamic resource alloca-
tion problem involving multiple entities with uncertainty, the
dynamic programming principle also leads to a high-dimensional
HJB equation (23) for the value function. Until recently these
high-dimensional PDEs have basically remained intractable.
We now demonstrate below that the deep BSDE method
is an effective tool for dealing with these high-dimensional
problems.

We consider a classical linear-quadratic Gaussian (LQG)
control problem in 100 dimensions,

dXt = 2
√
λmt dt +

√
2 dWt [12]

with t ∈ [0,T ], X0 = x , and with the cost functional
J ({mt}0≤t≤T ) =E

[∫ T

0
‖mt‖2 dt + g(XT )

]
. Here {Xt}t∈[0,T ] is

the state process, {mt}t∈[0,T ] is the control process, λ is a pos-
itive constant representing the “strength” of the control, and
{Wt}t∈[0,T ] is a standard Brownian motion. Our goal is to
minimize the cost functional through the control process.

The HJB equation for this problem is given by

∂u

∂t
(t , x ) + ∆u(t , x )−λ‖∇u(t , x )‖2 = 0 [13]

[e.g., Yong and Zhou (ref. 24, pp. 175–184)]. The value of the
solution u(t , x ) of Eq. 13 at t = 0 represents the optimal cost
when the state starts from x . Applying Itô’s formula, one can
show that the exact solution of Eq. 13 with the terminal condition
u(T , x ) = g(x ) admits the explicit formula

u(t , x ) =− 1

λ
ln
(
E

[
exp
(
−λg(x +

√
2WT−t)

)])
. [14]

This can be used to test the accuracy of the proposed algorithm.
We solve the HJB Eq. 13 in the 100-dimensional case with

g(x ) = ln
(
(1 + ‖x‖2)/2

)
for x ∈R100. Fig. 2, Top shows the

mean and the SD of the relative error for u(t=0, x=(0, . . . , 0))
in the case λ= 1. The deep BSDE method achieves a relative
error of 0.17% in a runtime of 330 s on a Macbook Pro. We
also use the BSDE method to approximatively calculate the opti-
mal cost u(t=0, x=(0, . . . , 0)) against different values of λ (Fig.
2, Bottom). The curve in Fig. 2, Bottom clearly confirms the
intuition that the optimal cost decreases as the control strength
increases.

Allen–Cahn Equation. The Allen–Cahn equation is a reaction–
diffusion equation that arises in physics, serving as a prototype

Han et al. PNAS | August 21, 2018 | vol. 115 | no. 34 | 8507
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Fig. 2. (Top) Relative error of the deep BSDE method for u(t=0, x=

(0, . . . , 0)) when λ= 1 against the number of iteration steps in the case
of the 100-dimensional HJB Eq. 13 with 20 equidistant time steps (N=20)
and learning rate 0.01. The shaded area depicts the mean ± the SD of
the relative error for five different runs. The deep BSDE method achieves
a relative error of size 0.17% in a runtime of 330 s. (Bottom) Optimal cost
u(t=0, x=(0, . . . , 0)) against different values of λ in the case of the 100-
dimensional HJB Eq. 13, obtained by the deep BSDE method and classical
Monte Carlo simulations of Eq. 14.

for the modeling of phase separation and order–disorder tran-
sition (e.g., ref. 25). Here we consider a typical Allen–Cahn
equation with the “double-well potential” in 100-dimensional
space,

∂u

∂t
(t , x ) = ∆u(t , x ) + u(t , x )− [u(t , x )]3, [15]

with the initial condition u(0, x ) = g(x ), where g(x ) = 1/
(
2 +

0.4 ‖x‖2
)

for x ∈R100. By applying a transformation of the time
variable t 7→T − t (T > 0), we can turn Eq. 15 into the form
of Eq. 1 such that the deep BSDE method can be used. Fig.
3, Top shows the mean and the SD of the relative error of
u(t=0.3, x=(0, . . . , 0)). The not explicitly known exact solution
of Eq. 15 at t = 0.3, x = (0, . . . , 0) has been approximatively
computed by means of the branching diffusion method (e.g.,
refs. 12 and 13): u(t=0.3, x=(0, . . . , 0))≈ 0.0528. For this 100-
dimensional example PDE, the deep BSDE method achieves a
relative error of 0.30% in a runtime of 647 s on a Macbook Pro.
We also use the deep BSDE method to approximatively com-
pute the time evolution of u(t , x=(0, . . . , 0)) for t ∈ [0, 0.3] (Fig.
3, Bottom).

Conclusions
The algorithm proposed in this paper opens up a host of
possibilities in several different areas. For example, in eco-
nomics one can consider many different interacting agents at the
same time, instead of using the “representative agent” model.
Similarly in finance, one can consider all of the participating

instruments at the same time, instead of relying on ad hoc
assumptions about their relationships. In operational research,
one can handle the cases with hundreds and thousands of par-
ticipating entities directly, without the need to make ad hoc
approximations.

It should be noted that although the methodology presented
here is fairly general, we are so far not able to deal with the quan-
tum many-body problem due to the difficulty in dealing with the
Pauli exclusion principle.

Materials and Methods
BSDE Reformulation. The link between (nonlinear) parabolic PDEs and BSDEs
has been extensively investigated in the literature (e.g., refs. 8, 9, 26, and
27). In particular, Markovian BSDEs give a nonlinear Feynman–Kac repre-
sentation of some nonlinear parabolic PDEs. Let (Ω,F ,P) be a probability
space, W : [0, T]×Ω→Rd be a d-dimensional standard Brownian motion,
and {Ft}t∈[0,T] be the normal filtration generated by {Wt}t∈[0,T]. Consider
the following BSDEs,

Xt = ξ+

∫ t

0
µ(s, Xs) ds +

∫ t

0
σ(s, Xs) dWs, [16]

Yt = g(XT ) +

∫ T

t
f(s, Xs, Ys, Zs) ds−

∫ T

t
(Zs)

T dWs, [17]

for which we are seeking a {Ft}t∈[0,T]-adapted solution process {(Xt , Yt ,

Zt)}t∈[0,T] with values in Rd ×R×Rd . Under suitable regularity assump-
tions on the coefficient functions µ, σ, and f , one can prove existence
and up-to-indistinguishability uniqueness of solutions (cf., e.g., refs. 8 and
26). Furthermore, we have that the nonlinear parabolic PDE is related

Fig. 3. (Top) Relative error of the deep BSDE method for u(t=0.3, x=

(0, . . . , 0)) against the number of iteration steps in the case of the 100-
dimensional Allen–Cahn Eq. 15 with 20 equidistant time steps (N=20) and
learning rate 0.0005. The shaded area depicts the mean ± the SD of the
relative error for five different runs. The deep BSDE method achieves a
relative error of size 0.30% in a runtime of 647 s. (Bottom) Time evolu-
tion of u(t, x=(0, . . . , 0)) for t∈ [0, 0.3] in the case of the 100-dimensional
Allen–Cahn Eq. 15 computed by means of the deep BSDE method.

8508 | www.pnas.org/cgi/doi/10.1073/pnas.1718942115 Han et al.
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Fig. 4. Illustration of the network architecture for solving semilinear parabolic PDEs with H hidden layers for each subnetwork and N time intervals.
The whole network has (H + 1)(N− 1) layers in total that involve free parameters to be optimized simultaneously. Each column for t = t1, t2, . . . , tN−1

corresponds to a subnetwork at time t. h1
n, . . . , hH

n are the intermediate neurons in the subnetwork at time t = tn for n = 1, 2, . . . , N− 1.

to the BSDEs 16 and 17 in the sense that for all t∈ [0, T] it holds
P-a.s. that

Yt = u(t, Xt) and Zt =σ
T(t, Xt)∇u(t, Xt) [18]

(cf., e.g., refs. 8 and 9). Therefore, we can compute the quantity u(0, X0)
associated to Eq. 1 through Y0 by solving the BSDEs 16 and 17. More specif-
ically, we plug the identities in Eq. 18 into Eq. 17 and rewrite the equation
forwardly to obtain the formula in Eq. 3.

Then we discretize the equation temporally and use neural networks
to approximate the spatial gradients and finally the unknown function, as
introduced in the methodology of this paper.

Neural Network Architecture. In this subsection we briefly illustrate the
architecture of the deep BSDE method. To simplify the presentation we
restrict ourselves in these illustrations to the case where the diffusion coef-
ficient σ in Eq. 1 satisfies that ∀ x∈Rd : σ(x) = IdRd . Fig. 4 illustrates the
network architecture for the deep BSDE method. Note that ∇u(tn, Xtn )
denotes the variable we approximate directly by subnetworks and u(tn, Xtn )
denotes the variable we compute iteratively in the network. There are three
types of connections in this network:

i) Xtn → h1
n→ h2

n→· · ·→ hH
n →∇u(tn, Xtn ) is the multilayer feedforward

neural network approximating the spatial gradients at time t = tn. The
weights θn of this subnetwork are the parameters we aim to optimize.

ii) (u(tn, Xtn ),∇u(tn, Xtn ), Wtn+1 −Wtn )→ u(tn+1, Xtn+1 ) is the forward
iteration giving the final output of the network as an approximation
of u(tN, XtN ), completely characterized by Eqs. 5 and 6. There are no
parameters to be optimized in this type of connection.

iii) (Xtn , Wtn+1 −Wtn )→Xtn+1 is the shortcut connecting blocks at differ-
ent times, which is characterized by Eqs. 4 and 6. There are also no
parameters to be optimized in this type of connection.

If we use H hidden layers in each subnetwork, as illustrated in Fig. 4,
then the whole network has (H + 1)(N− 1) layers in total that involve free
parameters to be optimized simultaneously.

Table 1. The mean and SD of the relative error for the PDE in Eq.
19, obtained by the deep BSDE method with different numbers
of hidden layers

No. of layers†

Relative error 29 58 87 116 145

Mean, % 2.29 0.90 0.60 0.56 0.53
SD 0.0026 0.0016 0.0017 0.0017 0.0014

The PDE is solved until convergence with 30 equidistant time steps
(N=30) and 40,000 iteration steps. Learning rate is 0.01 for the first half
of iterations and 0.001 for the second half.
†We count only the layers that have free parameters to be optimized.

It should be pointed out that the proposed deep BSDE method can also
be used if we are interested in values of the PDE solution u in a region
D⊂Rd at time t = 0 instead of at a single space-point ξ∈Rd . In this case
we choose X0 = ξ to be a nondegenerate D-valued random variable and
we use two additional neural networks parameterized by {θu0 , θ∇u0} for

approximating the functions D3 x 7→ u(0, x)∈R and D3 x 7→∇u(0, x)∈Rd .
Upper and lower bounds for approximation errors of stochastic approxima-
tion algorithms for PDEs and BSDEs, respectively, can be found in refs. 27–29
and the references therein.

Implementation. We describe in detail the implementation for the numeri-
cal examples presented in this paper. Each subnetwork is fully connected and
consists of four layers (except the example in the next subsection), with one
input layer (d dimensional), two hidden layers (both d + 10 dimensional),
and one output layer (d dimensional). We choose the rectifier function
(ReLU) as our activation function. We also adopted the technique of batch
normalization 30 in the subnetworks, right after each linear transformation
and before activation. This technique accelerates the training by allowing
a larger step size and easier parameter initialization. All of the parame-
ters are initialized through a normal or a uniform distribution without any
pretraining.

We use TensorFlow (31) to implement our algorithm with the Adam opti-
mizer (14) to optimize parameters. Adam is a variant of the SGD algorithm,
based on adaptive estimates of lower-order moments. We set the default
values for corresponding hyperparameters as recommended in ref. 14 and
choose the batch size as 64. In each of the presented numerical examples
the means and the SDs of the relative L1-approximation errors are com-
puted approximatively by means of five independent runs of the algorithm
with different random seeds. All of the numerical examples reported are
run on a Macbook Pro with a 2.9-GHz Intel Core i5 processor and 16 GB
memory.

Effect of Number of Hidden Layers. The accuracy of the deep BSDE method
certainly depends on the number of hidden layers in the subnetwork
approximation Eq. 7. To test this effect, we solve a reaction–diffusion-type
PDE with a different number of hidden layers in the subnetwork. The PDE is
a high-dimensional version (d = 100) of the example analyzed numerically
in Gobet and Turkedjiev (32) (d = 2),

∂u

∂t
(t, x) +

1

2
∆u(t, x) + min

{
1, (u(t, x)− u*(t, x))2

}
= 0, [19]

in which u*(t, x) is the explicit oscillating solution

u*(t, x) =κ+ sin
(
λ
∑d

i=1 xi

)
exp

(
λ2d(t− T)

2

)
. [20]

Parameters are chosen in the same way as in ref. 32: κ= 1.6, λ=

0.1, T = 1. A residual structure with skip connection is used in each sub-
network with each hidden layer having d neurons. We increase the
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number of hidden layers in each subnetwork from zero to four and
report the relative error in Table 1. It is evident that the approxima-
tion accuracy increases as the number of hidden layers in the subnetwork
increases.
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